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ABSTRACT

1Y

For many problems of interest in statistical pattern
recognition, density estimates for a random variable X of

dimension d are unreliable unless the number of sample

vectors is very large (>2d). For even moderately large d

(d > 12), sample sizes are often insufficient. However, lower

order moments of the form x? x% may be accurately estimated.

J

In this paper we are concerned with the problem of optimally

discriminating between two classes of random variables in

terms of the available information about them of reasonable

accuracy (their lower order moments). In no case do we
make any assumption about the form of the probability den-
sities of random variables X. (We do in some cases assume

certain forms for the densities of functions of these ran-

dom variables L(X).)

First we consider the performance of the Gaussian dis-

criminant function for arbitrary class distributions. How
well this function discriminates depends on the magnitudes

of the interclass differences of the first four moments.

It is shown how to adjust the constant term of the Gaussian
discriminant to obtain minimum probability of error. Then

a second order solution for the optimal quadratic discrimi-

nant is given. Finally the methods developed are applied

to determine general discriminant functions.
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INTRODUCTION
Suppose two classes of events are mutually exclusive and
exhaustive. Let these classes be denoted by Wy and w, and
their respective probabilities by P(ml) and P(mz). Suppose
further that each event has associated with it a vector X in
Rd. This vector contains the only observable information
about the event. We then have a random variable defined on
each class. Denote the probability densities of these random
variables by p;(X) and p,(X). Let M/, M,, ¥, and 22 be the
means and covariance matrices for these densities. Although
we may indeed not know the form of the densities pl(X) and
p>(X), we may estimate (or know) the first and second moments
lzstcd above as well as various higher moments.

For many practical problems this is the case.

A collection of sample X's of class wq and sample X's of class
w, are used to estimate the densities pl(X), pZ(X) and the
moments. However small sample sizes (<2d) prevent us from
accurately estimating these densities. But moments of the

form x? x? may be reliably estimated from samples of sizes
which are not exponential in d. Hence inmany actual situations,
where d is only moderately large (d > 12), the only reliable
information about the classes W, and w, consists of lower order
moments. Using this information how do we best discriminate
between Wy and wz? This is exactly the mathematical problem

we shall consider.

If we observe a certain vector X, how do we decide with
which class it is most likely associated? One method is the
Gaussian discriminant defined as follows: Assign an observed
test vector, X, to class 1 or 2 according to the magnitude

of the following expression -




'..(X-M-,)tZEI(X-MZ) - !,(X~M1)tzil(X-Ml) + 4% 1n |2‘,2| - 4% 1n |21|

< t class 2

where the threshold .
t = In P(ml) - 1n P(wz)
If pl(X) and pz(X) are normal densities this is equivalent

to choosing class 1 if pl(X) > p(‘“1) and class 2 otherwise.

p, (X) P(wzi
Clearly this procedure is optimal (minimizes the probability

of error) in the normal case,

Let us call the above discriminant function G(X). Although
G may be the optimal discriminant function only in the case that
Py and p, are indeed normal, it may be a good approximation to
an optimal discriminant in other cases. We shall first prove
a result in this direction and then show how to adjust the
constant term of the discriminant G(X) to yield minimum prob-
ability of error using third and fourth moments. We then

(1)

give minimal variance solutions to the problem of finding
the optimal quadratic discriminant function. These solutions
are of minimum error in several asymptotic cases. Again the
first four moments are used. Finally general discriminant
functions are derived using marginal distributions or moments
of the form x? x?. Upper bounds on the probability of error of

these discriminants are given in asymptotic cases using the

(1) These solutions, introduced in section 111, are so
named since they involve the minimization of certain weight-
ced sums of the variances of a discriminant function under
cach hypothesis.




central limit theorem for finitely dependent random variables
(see[S]).
I1I. THE GAUSSIAN DISCRIMINANT

Theorem 1(1) E

Proof:

Pl(g) = ﬁd G(X)pl(X]dx >0

& {{d (-(\)pz(,\)dx = l"p‘((l)
Suppose Y = A X is a non-singular linear mapping.
For a probability density § we have MS = A MG and
ES = A 25 AY where Mg and 25 are the mean and
covariance matrix for the transformed density

S(Y)=|Ai‘15(A-1Y). As on page 34 of [1] let us deter-

mine A such that

1 0

1
- - t= ' =
Z3 AZ, A . I

0 1

) )

\1 (

Ne
E:=Az, z\t" . =

\0 A/
/

where i denotes Py

() This result was stated without proof in [2] for the uni-
variate case.
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Now Ep1 (G(X)) = E{)l (G(X(Y))) =

e TR S OO N
%, [Z(Y M3) AT (Y-M3) - M) B (YeMp) ¢
] akn t
> In [AZZAI ~ % In [Azll\ ]] .
[ 2
e : ‘
-5 12 ? e e sy B
&
alf
e 1. . e 2
‘2lzxiLf>l[("i My;) + Mgy MZi)] * 1 % 1nk,
L
1 411 1 2
"7 &R, tr OyMe )t -1 Im ) 20
1Yy

S

since 0 < xi < o and 2=~1 > In 2 4oy gll 2 > 0.

fi
}
?
i
!
i
:
i
¢

Similarly F'Pz [Q(x)] 5

B [Qx ()

»

3

|
9] =

d 2
? ot [(Vi‘MEi) i (Mii'Mii)] + 1Indy

o

Pu, —

d
2
212(1 - Ay - (Mz;-My)° o+ 1n xi)

d
?(14\1 + 1n Ai) <0

This completes the proof of the theorem.
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From the above E_ (G(X)) - E_  (G(X)) =
P P

o] —

d > 1 1
2, (M§i~MIi)“ (lep J 2 ¢ A -2 which is the
1 s i i

divergence when P, and p, are normal densities. This quantity
1s always positive when the first two moments of (Xlwl) and

tigi S0 20 far

(SR8 o

(X|w,) are not identical. This follows since
all z & 0. 2§ 1.
We now discuss the adjustment of the constant term in

G(X). This is equivalent to finding ¢ which minimizes the

/

error of the decision rule G - ¢ < t. This error function

may be written

E(¢c) = P(w,) /dp, + l‘(u\l) /-dpl

G-c>t G-~c<t

I£ Py and p, are normal densities, then ¢=0 is optimal. For
the general case consider the graphs of P(ml]\l and P(w,)Y-,
where Y4 and y, are the density functions of the random

variables G(X/wl) and G(X/w,) respectively.

ptu)_»)y:

[/

T

)
'//////4"/////4'//
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E(c) will then be the area of the shaded region. This is minimum
for ¢ = a-t where a is a solution of the equation P(mz)yz (a) =
P(ml)y1 (a). Again in the normal case a=t by the optimality
of the decision rule G E t. This is however not always true
in the general case as will be demonstrated below.

We now estimate a. Since both G(X/wl) and G(X/wz) can ’
be expressed as sums of d random variables, the central
limit theorem implies in many cases that Yy and Y, approach
normal densities for large d. This occurs for instance
when the Y in the proof of the above theorem are independent
under the hypotheses wq and W5 - We then estimate a by a

| solution of

Var(G(X/wz))

2 Var(6(X/w)) 2 Var(G(X/w,))

SRICIET0) N I GLEATS)) K LA
> Var(G(X/wl))

The calculations are as follows:

1 811 1 2
E(G(X/wp)) = 3 zl;(r s Loy M30% -1+ 102
¢! 1 .
E E(G(X/ -1§1-x Ms.-M3.)% + 1n A
' (G( mZJ) = 1 i ( 2% o L it
L
) 1“"1'“51)2 1 1 2 2\[2
var (G(x -~ W S PR R [+ Fo T L R eIy
o (( Aol T 2w T N M)
6
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Var (G(X/wz))

2(y;-M74) (M7;-M3;)
X

d z 1
- |3 ((Yi'Mii) e '
1

-6 |1 &

Pr%i,i=1 ;

J

2

1 1 > 1 1
+(K-l)(rj-l) -2(y;-M7;) (ﬂ'l)(x_'”

j
G SR | P M=

1j
A,
J
*4()’i‘Mii) (yj-Mij) (Mii-MEi) (M_i):MjJ))
ATAL:
it

[(yi-Mii)z(yj -M;j)z-l]

-

d 1 1 _
T GG E
i,5=1 *i j 1

1
d (=—1) (M=, -Mz.)
o' 5 )‘i 1224 E.
i x Py

[(Yi’Mii)‘(Yj'Mij)]

(3]




: 1 2 2.1 1
- E (y;~My.) " (y:-My:) " (5—-1) (1) +
P, Ii,gil WL LR e X Aj

(l-k.)(l-k.)
S0y M) 2 My ) (M35 M )(A 1)

-2(y;-M3;)* (XD A=)

+4(y, M21)()’ -M5 )(MZ1 li)(Mij'Mij)
g A0 1 2
=5 2 GoDGED By oMz oM ° ]
i 31 4 j 2
d 1
2-1) (M5, -M3.) E~ [ -M; -M ]
+.’§L1 (Xi )(MlJ ZJ) P, (y; ) (Y 23)
)‘_L, A (Mg -M5 )
i=1
The above third and fourth moments may be easily estimated
from sample data by using the transformaticn A of the theorem.
The solution we then choose for a is that solution for which

lwwl)yl 1s increasing more rapidly than }sz)yz.i.c.,for which

l(('(X/(u I)= E(G(X/mz))-
dr(G(X7m ii Vﬁ}iL(X/mzii.

IT1. THE MINIMAL VARIANCE SOLUTION
Def. 1: Let D be a class of probability densities u(m,v)

on the real line parametrized continuously by their means m

and variances v (meR, veVcR). D is called translational if

in addition
u(ml,v)(x) = u(mz,v)(x+m,-ml) for all real x.

8
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Def. 2: Let D be a translational family. Then D is said to

be of monotone error if in addition to the above the following

is satisfied: For each 0 < a < 1 and any two members of D,

p(o,vl) and u(l,vz), the function
C '+ 00
1ia(v1,vz) = n}in{f (l—a)ln(l,vz)xlx +f a u((),v])dx}
= C

C o0
is differentiable in vy and v, and
ok

o
avl

oE
o

oV,

+

> 0 for all Vi» Vy € V.

-

+ > ; . -

Theorem 2 Let vl(a), vz(a) be differentiable mappings from
n . ;

some parameter space AcR™ into the variance space V of a

: SR :
monotone error family D. If a' is a local extremum of the
~ - . & —’ _’ -’ .
function hu (vl(a),vz(a)) then a' is a local extremum of

Bvl(z) + (l4d)v2(5) for some -1 < B < 1.

> K3 >
S " & ot . g 5 3 1 N
proof: Let a' be a local extremum of L“(vl(a),vz(d)).

Then VE (v, (a'),v (3')) 5
; Ja 1 ’ 2

) v, G +("_‘1q_
a v,

Then for some B, -1<B<1, V(Bv, + (1-]18])v,) = 0 at

ok
a

avl

>
») Vv,(a') = 0

a'

I~

> ) : > >
a', T#f EZ (vl,vz) is concave at vl(u'), v:(u’] and

. “p % g 8 -
B>0, it can be shown that a' is a local minimum of

Bv1 + (1-B)v,.
'
. . . . >
Hence to minimize ha(vl(u),v,(ﬁ)) we need only consider
- . - >
functions of the form Bvl(u) + [iid)v,(ﬁ) for various values

of B. These may be much easier to handle numerically. We

9
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now apply these results to optimal discrimination. Suppose
we consider a certain class of discriminant functions L(;).
We may further restrict this class in such a way that i
E(L(E)/mz) - E(L(g)/ml) = 1. If the original parameter

space A is rich enough to include the Gaussian discriminant
and is homogeneous and translation invariant this may be
easily achieved provided that the first and second moments
are not identical under both hypotheses (see Theorem 1). If
for the resulting set of the parameters the distribution
functions of (L/ml) and of (L/wz) behave (asymptotically)

as those of some family D of monotone error, we may determine

that discriminant which (asymptotically) minimizes

Ep(ml) (L/wl,L/mz) by considering the extrema of

B Var (L(E)/ml) + (1{4) Var (L(E)/wz) for various values of
B, -1< B < 1l,and either a) choosing that extremum which gives
minimum error as calculated from knowledge of the family D
or b) when D is not known, choosing that extremum for which

the discriminant performs best on sample data.

One may at this point ask why we do not simply choose L(ﬁ)
which best separates the sample data. The reason in many
practical situations is again that sample sizes are not ex-
ponential in d. If the parameter space A has dimension greater

than or equal to d-1 (as is the case for the class of linear

e ———— i ———————




discriminants), it is highly likely that the '"small" samples

will be well separated by some L(K). However this L(E) will

not necessarily perform well on new data since the a is not
reliably estimated. Our procedure yields a one parameter

family of discriminants determined from the (reliably estimated)
moments. The sample size need not be exponential in d to

reliably estimate the (single) parameter 8.
In the following sections we will describe several ap-

plications of the above procedures and indicate which limit
theorems in Probability guarantee the existence of the
monotone error families D. Even if such limit theorems do
not apply the procedure b) is indeed a second ord;r solution
to the problem of finding the optimal discriminant L(5), in
that an approximate solution is derived in terms of the means
and variances of L(S) under Wy and W, . We call this method

the minimal variance solution.
IV. THE QUADRATIC DISCRIMINANT FUNCTION

By an affine transformation we may assume that
X1» X5, +v. X, are uncorrelated under both hypotheses and

further that:

n

E(xi/ml) 0; E(xi/mz) = 1

i
>
. BN

’ . A Vet
Var(xi/wl) o Var(xi/wz)




Let Q(X) = ¥ a.. x.x. +Xb.x.. In many cases Q is normal
iy 17173 i7i

or (x:,zn) for large d. The class of normals and the class
of (xgn) are classes which are characterized by their means
and variances. It is easy to see that such classes are of
monotone error. Hence the following minimal variance solution
may indeed be (asymptotically) optimal:

E(Q/‘“l) Za11 i

E(QQ/w,) =X a;; + Ta,; (1] Z) +Zb,

i<j

We want to find extrema of B Var(Q/w;) + (1-8) Var (Q/w,) sub-

ject to ¥ a.. +Xb. +Xa.. (1+>\.2-)‘¥) = 1. Using a Lagrange
i<j 1 | 11 1 1

multiplier ¢, we determine extrema of

BE, ( T &, x X, +Y a. s (xi - A%) +Zb.x.)2

i<j n ) A
+(1-BDE, (2 a;;0x;-1) +Z ay (x wleks ) +2 b, (x; Sy
i<j
2
=0 (1E<Jd : +Ebi + Eaii(uxi-xi) - 1)

Differentiating with respect to aij and bi and setting equal

to zero we obtain:

2 3 ag [sr: (xgxX%5) * (1-BDE, (xgxyx;x; -1)]
+ 2Zb, [BE (x x.x.) (1-BDE, (xgx;x, -1)]

+ zzdu [BL (xlx X5 ) + (l-IBI)EZ(xixixjd-)\i)]

= ¢ for i < j

= o



) . : 2 : 2 1.2
"z?‘x a0y [Bl.l(xlxkxi) + (1HBDE, (xgx x§-1 xi)]
) > 2
+2Zb, [BEl(xgx‘i') R (1-[3[)132(x2xi-1-xi)]

: ST B R 2 2
EJ“ [Bllllxﬁxi )\2 Ai) + (I-IBI)LZ(xExi (1+Ai)(1*)‘2)]

¥
to

Z .
= + -
(1+A5-23) @

and

2 gku“\, [Bliltxlxkx.l) + (l-ld)liz(xgxkxi-l)]

Lo 2 2
+ 223“ [Blzl(xgxi) + (1-[B|)l’.2(x2xi-l-)‘l)]

<>

+ 2 b, [B SEEGE ) A‘E] -

In matrix form M a = od yields a ¢ M'1 d =023, From the

) -
constraint ¢ = (Y c.. +YcC. +Ec..(1+)\‘.'-)\!) -1) L
i<y 1) i ii L
] & .
where €40 Sp and ¢ are the components of ¢ corresponding

-+
to a.., b., and a.. of a.

1j i ii

Unfortunately the above solution requires an inversion

pl 9
“+3 B . -
d t"d 5 ’”id matrix for each value of R. Also the

- -

asymptotic class may be unknown. The principal axes dis-

of a

P4
criminant P =Zui x‘i' +y bi X5 has the advantages of being

more numerically feasible (d equations in d unknowns) and :

behaving normally (large d, independent xi) in many cases.
Its minimal variance solution is as follows:
f 4 Y hl
2 _E & B : - 1.31-
22 b, [SI.l(xQx.l) ¢ (BDE, (xoxT -1 .\i)]

= : & 2 k¢l g - 2 2
+ 2 Eue [ﬁil:l(xexi -XQ Xi) + (l-lﬁbl::(xQ.\i - (l*kgk)(li'\iﬂ] i
3

% A
= (I*Xi-Ai) ¢




2 E"t [Blil(x‘éxi) + (I{Bl)liz(xixi-l-)\i)]

+ 2b, [p‘x!l - (l-hl)kf] = 0
The above system can be reduced to d equations in the d un-
knowns a and then solved for each value of B. The solution
(ui.hi,®) for the constrained system is then obtained in a
straight forward manner. Normal tables may be used to

estimate the error for each B.

V. GENERAL DISCRIMINANT FUNCTTIONS

We may use the procedure in III to determine higher
order discriminants. However this may be numerically im-
practical even for discriminants of moderate order. Also
for large dimensions d and relatively small (<d3) sample
si1zes only marginal densities and their correlations may be
reliably estimated. Hence we propose a method which depends
only on marginal discriminants and their correlations. In
two asymptotic situations upper bounds on the error rate

are obtained.,

Let us assume that X sX5y... are uniformly bounded
but relax any other previous assumption. (However in many
practical cases "uncorrelating'" the X, may increase the
applicability of a limit theorem.) Let fi(xi) be a dis-

criminant function for the one-dimensional random variable




X - For simplicity(z) let us assume that, for all dis-
criminants fi(xi) henceforth considered, E(fi/mi) # E(fi/mz).
One choice of fi is (an estimate of) the log-likelihood
ratio of the marginal densities of X4 1n p%(xi) - 1n pi(xi).
Consider the discriminant function
d

D (X) =21 a; £, (x;)

To obtain the minimal variance solution we find extrema of
2
2
+ (H8DE,(Z a;f, (x;) -2 a,E, (£, (x;)))
=0 (2 aiEZ(fi(xi)) 'z aiEl(fi(xi))

These are given by -

PR . e TN
where
b; = E,(£;) - Ej(£;)
m; = 28E) [fifj . El(fi)El(fj)]

+ 2(14BDE, |E;f; - Ez(fi)Ez(fj)]

-1
and ¢ =(2 ci(EZ(fi)-El(fi)))

The following definition is adapted from [3].

Def. 3: An infinite sequence of random variables X5 is

said to be finitely dependent if for every nonempty finite

(2) This is hardly a restriction since in practical cases

estimates of the expectations mentioned will rarely be
the same.

15




subset of the variables A there exists another finite sub-
set B(A) (including A) such that {xi € A} is independent of

{x; € B} and sup l%i%ll < =, where || denotes the cardinality
A

of a set.

If our sequence X{r Xo5 one is finitely dependent then
it follows that the sequence {fi(xi)} is also finitely depen-
dent. By the results of [3] the discriminant function

d
Z:aifi(xi) will be normally distributed for large d
1

n

D(X)
provided that the ai's become sufficiently small(S) as d
becomes large. This has the following useful consequence.
Theorem 5: Let x;, x,, ... be finitely dependent and suppose
fi(xi) is the log-likelihood ratio. Suppose further that

X{ o Xy are independent. If for large d the minimal
1 2

variance solution D(X) has coefficients which satisfy the
above '"smallness'" conditions, then the probability of error
using D(X) will become bounded above by the Bayes error for

the sequence X; » X

o L T (A 2d < 4y

'k
outline of proof: the optimal discriminant function for

k

i . 1 ,

X » Xp v v0 X 38 DX » £ 2 E, (x, ).
tq 29 1k 3 s

As d becomes large k becomes large and the above

coefficients (é) will satisfy the "smallness"

(3)The exact conditions on the a; in terms of the variances
of the fi(xj) can be determined %rom Corollary 4.2 on page
232 of |3

16
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condition. Since the minimal variance solution
is unique it will have minimum error among all
those discriminants whose coefficients satisfy
the "smallness" condition (since this is a

connected set in the coefficient space).
In many practical situations the marginal densities are

not available. We introduce a method of minimal marginal
moment variance.{(m.m.m.v.) Let x be a one-dimensional random
variable. Suppose Yi» Yos ven is independent and identi-
cally distributed (i.i.d.) with the same distribution as

X under both hypotheses. Consider a polynomial discriminant
function P (Y) § 2? '. The minimal variance solution
will be of the form PQ(Y) T}}: §a y where aJ are extrema

of B Var(§ a. xJ/w ) + (144) var ( a. X /m,)
l .

- o (E, (§a %'y = 131(25.x-‘) -1).
¥ 3
Differentiating yields -
:%52 [Blzl(x“-‘ - xE (Y o (1-]5!)1;2(.\-“-‘-x-‘Ez(xQn]
= ¥ (B,(x") - Eytx')).
Using normal tables the correct B is determined and the

corresponding Ki calculated from the variances of Pq.

Def. 4: The m.m.m.v. discriminant function of x of degree (d,Q)
is given by ?Q(x) =D 5ij where the Ei are the above
1 J

minimal variance coefficients.

17




Theorem 4: Let X1s X5, e be finitely dependent and suppose
fi(xi) is the m.m.m.v. discriminant function of X5 of degree (k,Q).

Suppose further that X; » X are ici.d.  Tf for

i ’
1 2
large d and large Q the minimal variance solution D(X)
has coefficients which satisfy the previous '"smallness"
conditions, then the probability of error using D(X) will

become bounded above by the Bayes error for the sequence

X: » X. 5 ccey xi (lkid<lk+l)'

o M k
outline of proof: the optimal discriminant function
k
s 0w 1
X: 5 Byt wwsy B I8 BN == 2 bz, )
i i, iy k 1 ie

where l(xi ) is the log likelihood ratio. Since

v

for large Q this may be well approximated by

k Q : i

D,(X) = 1 4 M x? where g. are determined by

Q b R j

fitting l(xi ) to a polynomial of degree Q. But
S

for large k the minimal variance solution for

Kk ; k
X. 5 Xi s oo. is M(X) = %?}?‘5] x-} = IIE)IZTQ(xi ¥
o S

S
It will satisfy the smallness condition and its

error will approach that of D, which in turn

Q

approaches that of D. Hence the error of M

approaches the Bayes error of Xj s X
1

Xs o
1,
By arguments similar to the proof of Theorem 3

Kk

i,

the error of D(X) will become bounded by the

Bayes error of X, ;, X: ;5 vesy Xy
i i i
1 o k

18
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We conclude from these theorems that, even if we do not

know which subsequence x. , x. ,
is an independent sequence, we may discriminate the finitely

.. of the process X1 X5,

dependent process (asymptotically) as well as we could dis-

criminate x. , X. , ... if the {i.} were known.
o R J
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